OJ 需备算法
- 作者: TheBadZhang
- 时间:
- 分类: 编程
- 评论
OJ 必须要了解的算法(如果要和别人比时间的话)
1. 数据量巨大的时候 std::cin
, std::cout
TLE (超时)
static bool speedUP = [](){std::ios::sync_with_stdio(false); cin.tie(nullptr); return true}();
// 静态变量先于 main 函数初始化,以实现直接调用 lambda 函数
// std::ios::sync_with_stdio (false); 用以关闭 同步功能,不写缓存,不 flush
// cin.tie (nullptr); 用于绑定输入流,nullptr 为当前输入流
// 写了一个 lambda 函数并调用了
https://byvoid.com/zhs/blog/fast-readfile/
https://zhuanlan.zhihu.com/p/35652783
https://www.jianshu.com/p/fa8ad995d300
2. 快速整数平方根(牛顿迭代打表)(std::sqrt
的 4 倍)
inline int mysqrt(int n) {
static int table[256] = {
0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57,
59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83,
84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102,
103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145,
146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156, 157,
158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168,
169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178,
179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188,
189, 189, 190, 191, 192, 192, 193, 193, 194, 195, 195, 196, 197, 197,
198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206,
207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215,
215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221, 222, 222, 223,
224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230, 231,
231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238,
239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246,
246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253,
253, 254, 254, 255
};
int xn;
if (n >= 0x7FFEA810) return 0xB504;
if (n >= 0x10000) {
if (n >= 0x1000000) {
if (n >= 0x10000000) {
if (n >= 0x40000000) {
xn = table[n>> 24] << 8;
} else {
xn = table[n>> 22] << 7;
}
} else {
if (n>= 0x4000000) {
xn = table[n>> 20] << 6;
} else {
xn = table[n>> 18] << 5;
}
}
xn = (xn + 1 + (n/ xn)) >> 1;
xn = (xn + 1 + (n/ xn)) >> 1;
return ((xn * xn) > n) ? --xn : xn;
} else {
if (n>= 0x100000) {
if (n>= 0x400000) {
xn = table[n>> 16] << 4;
} else {
xn = table[n>> 14] << 3;
}
} else {
if (n>= 0x40000) {
xn = table[n>> 12] << 2;
} else {
xn = table[n>> 10] << 1;
}
}
xn = (xn + 1 + (n/ xn)) >> 1;
return ((xn * xn) > n) ? --xn : xn;
}
} else {
if (n>= 0x100) {
if (n>= 0x1000) {
if (n>= 0x4000) {
xn = (table[n>> 8]) + 1;
} else {
xn = (table[n>> 6] >> 1) + 1;
}
} else {
if (n>= 0x400) {
xn = (table[n>> 4] >> 2) + 1;
} else {
xn = (table[n>> 2] >> 3) + 1;
}
}
return ((xn * xn) > n) ? --xn : xn;
} else {
if (n>= 0) {
return table[n] >> 4;
}
}
}
return -1;
}
https://blog.csdn.net/hunterlew/article/details/45341253
https://blog.csdn.net/xtlisk/article/details/51249371
https://blog.csdn.net/wanchuanhua/article/details/5996708
http://bbs.mydigit.cn/simple/?t2329623.html
https://www.cnblogs.com/signal/p/3818332.html
https://www.cnblogs.com/atyuwen/archive/2009/11/09/1598942.html