2020年5月

$$W = \left(\left[\frac{c}{4}\right]-2c+y+\left[{\frac{y}{4}}\right]+\left[\frac{13(m+1)}{5}\right]+d-1\right) \bmod 7$$

w:星期; w 对 7 取模得:0 - 星期日,1 - 星期一,2 - 星期二,3 - 星期三,4 - 星期四,5 - 星期五,6 - 星期六
c:世纪 - 1(前两位数)
y:年(后两位数)
m:月(m 大于等于 3,小于等于 14,即在蔡勒公式中,某年的 1、2 月要看作上一年的 13、14 月来计算,比如 2003 年 1 月 1 日要看作 2002 年的 13 月 1 日来计算)
d:日
[ ] 代表取整,即只要整数部分。

https://www.zhihu.com/question/42879877

https://baike.baidu.com/item/%E8%94%A1%E5%8B%92%E5%85%AC%E5%BC%8F/10491767?fr=aladdin

https://blog.csdn.net/S_999999/article/details/88723201

https://www.cnblogs.com/faterazer/p/11393521.html

https://blog.csdn.net/qq_40655981/article/details/98457824

https://www.cnblogs.com/ZhaoxiCheung/p/6803376.html

OJ 必须要了解的算法(如果要和别人比时间的话)

1. 数据量巨大的时候 std::cin, std::cout TLE (超时)

static bool speedUP = [](){std::ios::sync_with_stdio(false); cin.tie(nullptr); return true}();
// 静态变量先于 main 函数初始化,以实现直接调用 lambda 函数
// std::ios::sync_with_stdio (false); 用以关闭 同步功能,不写缓存,不 flush
// cin.tie (nullptr); 用于绑定输入流,nullptr 为当前输入流
// 写了一个 lambda 函数并调用了

https://byvoid.com/zhs/blog/fast-readfile/
https://zhuanlan.zhihu.com/p/35652783
https://www.jianshu.com/p/fa8ad995d300

2. 快速整数平方根(牛顿迭代打表)(std::sqrt 的 4 倍)

inline int mysqrt(int n) {
    static int table[256] = {
        0,    16,  22,  27,  32,  35,  39,  42,  45,  48,  50,  53,  55,  57,
        59,   61,  64,  65,  67,  69,  71,  73,  75,  76,  78,  80,  81,  83,
        84,   86,  87,  89,  90,  91,  93,  94,  96,  97,  98,  99, 101, 102,
        103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118,
        119, 120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132,
        133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145,
        146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156, 157,
        158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168,
        169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178,
        179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188,
        189, 189, 190, 191, 192, 192, 193, 193, 194, 195, 195, 196, 197, 197,
        198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206,
        207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215,
        215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221, 222, 222, 223,
        224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230, 231,
        231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238,
        239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246,
        246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253,
        253, 254, 254, 255
     };
    int xn;
    if (n >= 0x7FFEA810) return 0xB504;
    if (n >= 0x10000) {
        if (n >= 0x1000000) {
            if (n >= 0x10000000) {
                if (n >= 0x40000000) {
                     xn = table[n>> 24] << 8;
                 } else {
                     xn = table[n>> 22] << 7;
                 }
             } else {
                if (n>= 0x4000000) {
                     xn = table[n>> 20] << 6;
                 } else {
                     xn = table[n>> 18] << 5;
                 }
             }
             xn = (xn + 1 + (n/ xn)) >> 1;
             xn = (xn + 1 + (n/ xn)) >> 1;
            return ((xn * xn) > n) ? --xn : xn;
         } else {
            if (n>= 0x100000) {
                if (n>= 0x400000) {
                     xn = table[n>> 16] << 4;
                 } else {
                     xn = table[n>> 14] << 3;
                 }
             } else {
                if (n>= 0x40000) {
                     xn = table[n>> 12] << 2;
                 } else {
                     xn = table[n>> 10] << 1;
                 }
             }

             xn = (xn + 1 + (n/ xn)) >> 1;
            return ((xn * xn) > n) ? --xn : xn;
         }
     } else {
        if (n>= 0x100) {
            if (n>= 0x1000) {
                if (n>= 0x4000) {
                     xn = (table[n>> 8]) + 1;
                 } else {
                     xn = (table[n>> 6] >> 1) + 1;
                 }
             } else {
                if (n>= 0x400) {
                     xn = (table[n>> 4] >> 2) + 1;
                 } else {
                     xn = (table[n>> 2] >> 3) + 1;
                 }
             }
            return ((xn * xn) > n) ? --xn : xn;
         } else {
            if (n>= 0) {
                return table[n] >> 4;
             }
         }
     }
    return -1;
}

https://blog.csdn.net/hunterlew/article/details/45341253
https://blog.csdn.net/xtlisk/article/details/51249371
https://blog.csdn.net/wanchuanhua/article/details/5996708
http://bbs.mydigit.cn/simple/?t2329623.html
https://www.cnblogs.com/signal/p/3818332.html
https://www.cnblogs.com/atyuwen/archive/2009/11/09/1598942.html