分类 学习 下的文章

$$\begin{aligned}

\frac{\pi}{2}=\left(\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} dx \right)^2 \\

&=\sum_{k=0}^{\infty}\frac{(2k)!}{2^{2k}(k!)^2} \frac{1}{2k+1} \\

&=\prod_{k=1}^{\infty} \frac{4k^2}{4k^2-1}

\end{aligned}$$

$\sum_{s}^{ss}$

分号

$\frac {1}{x}$

根号

$\sqrt {x}$

概率

排列组合

排列|组合

-:|:-:

$A_n^k = \frac {n!}{(n-k)!}$|$C_n^k = \frac {n!}{(n-k)!k!}$

均值与方差

期望|方差

-:|:-:

$E(X) = \sum_{i=1}^{n} (x_i pi)$|$D(X) = \sum{i=1}^{n} (x_i - E(X))^2 p_i$

  1. 均值方差的性质

    • $E(aX+b) = aE(X) + b$

    • $D(aX+b) = a^2D(X)$
  2. 两点分布与二项分布的均值、方差

    • 若$X$服从两点分布,则$E(X) = p$,$D(X) = p(1-p)$

    • 若$X \sim B(n, p)$,则$E(X) = np$,$D(X) = np(1-p)$

不等式

(1)$\frac{a+b}{2}\geq\sqrt{ab}$

(2)$a^2+b^2\geq2ab$

(3)${a+b+c}{3}\geq{(abc)}^\frac{1}{3}$

(4)$a^3+b^3+c^3\geq 3abc$

(5)$\frac{a_1+a_2+\dots+a_n}{n} \geq {(a_1a_2…a_n)}^\frac{1}{n}$

(6)$\frac{2}{\frac{1}{a}+\frac{1}{b}}\leq\sqrt{ab}\leq\frac{a+b}{2}\leq\sqrt{\frac{a^2+b^2}{2}}$

  1. 均值不等式:

    • 两数均值不等式:$\frac{a+b}{2} \geq \sqrt {ab}$

    • n 数均值不等式:$$\frac {a_1+a_2+ \cdots + a_n}{n} \geq \sqrt [n]{a_1a_2 \cdots a_n}$$

    • 调和平均数、几何平均数、算术平均数、平方平均数

    • $\frac {2}{\frac{1}{a}+\frac{1}{b}} \leq \sqrt{ab} \leq \frac {a+b}{2} \leq \sqrt {\frac{a^2 + b^2}{2}}$
  2. 柯西不等式:$(a^2 + b^2)(c^2 + d^2) \geq (ab + cd)^2$

  3. 糖水不等式:$\frac {b}{a} < \frac {b+c}{a+c}$

不等式拓展阅读

三角函数

特殊值

正弦|余弦|正切

-|:-|:-

$\sin (0) = 0$|$\cos (0) = 1$|$\tan (0) = 0$

$\sin (\frac {\pi}{6}) = \frac {1}{2}$|$\cos (\frac {\pi}{6}) = \frac {\sqrt {3}}{2}$|$\tan (\frac {\pi}{6}) = \frac {\sqrt{3}}{3}$

$\sin (\frac {\pi}{4}) = \frac {\sqrt {2}}{2}$|$\cos (\frac {\pi}{4}) = \frac {\sqrt {2}}{2}$|$\tan (\frac {\pi}{4}) = 1$

$\sin (\frac {\pi}{3}) = \frac {\sqrt {3}}{2}$|$\cos (\frac {\pi}{3}) = \frac {1}{2}$|$\tan (\frac {\pi}{3}) = \sqrt {3}$

$\sin (\frac {\pi}{2}) = 1$|$\cos (\frac {\pi}{2}) = 0$|$\tan (\frac {\pi}{2}) = +\infty$

诱导公式

和差角公式

  • $\cos (a+b) = \cos a \cos b - \sin a \sin b$

  • $\cos (a-b) = \cos a \cos b + \sin a \sin b$

  • $\sin (a \pm b) = \sin a \cos b \pm \cos a \sin b$

  • $\tan (a+b)=\frac{\tan a+ \tan b}{1 - \tan a \cdot \tan b}$

  • $\tan (a-b)=\frac{\tan a- \tan b}{1+ \tan a \cdot \tan b}$

和差化积

  • $\sin a+ \sin b=2 \sin \frac{a+b}{2} \cos \frac{a-b}{2}$

  • $\sin a- \sin b = 2 \cos \frac{a+b}{2} \sin \frac{a-b}{2}$

  • $\cos a+ \cos b = 2 \cos \frac{a+b}{2} \cos \frac{a-b}{2}$

  • $\cos a- \cos b = -2 \sin \frac{a+b}{2} \sin \frac{a-b}{2}$

  • $\tan a \pm \tan b = \frac {\sin (a \pm b)}{\cos a \cdot \cos b}$

  • $\cot a \pm \cot b = \pm \frac {\sin (a \pm b)}{\sin a \cdot \sin b}$

积化和差

  • $\sin \alpha \cos \beta = \frac{1}{2}[\sin (\alpha + \beta) + \sin(\alpha - \beta)]$

  • $\cos \alpha \sin \beta = \frac{1}{2}[\sin (\alpha - \beta) + \sin(\alpha - \beta)]$

  • $\cos \alpha \cos \beta = \frac{1}{2}[\cos (\alpha + \beta) + \cos(\alpha - \beta)]$

  • $\sin \alpha \sin \beta = - \frac{1}{2}[\cos (\alpha - \beta) + \cos(\alpha - \beta)]$

二倍角

  • $\sin (2x) = 2 \sin(x) \cos(x)$

  • $\cos (2x) = \cos^2(x) - \sin^2(x) = 2 \cos^2(x) - 1 = 1 - 2 \sin^2(x)$

  • $\tan (2x) = \frac{2 \tan a}{1 - \tan^2 a}$

正弦定理

$$\frac{a}{\sin(A)}=\frac{c}{sin(C)}=\frac{c}{sin(C)}=2R$$

余弦定理

$$cos(C) = \frac {a^2+b^2-c^2}{2ab}$$

升幂降角

升角降幂

$$S_{\triangle ABC} = \frac {1}{2}AB \sin C$$

向量

数列

$a_n = a_1 + (n-1)d$

若$a_n$是等差数列,则有

$$S_n = \frac {(a_1 + a_n) * n}{2}$$

$a_n = a_1 q^{n-1}$

若$a_n$是等比数列,则有

$$S_n = \frac {a_1 * (1 - q^n)}{1-q}$$

$a_n = Sn - S{n-1}$

  1. 裂项相消

    1. $a_n=\frac{1}{n(n+1)}$

$$\begin{aligned}S_n&=a_1+a_2+a_3+\cdots+a_n \\ &=\frac{1}{1\times 2}+\frac{1}{2\times 3}+\cdots+\frac{1}{n(n+1} \\ &=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdots+\frac{1}{n}-\frac{1}{n+1} \\ &=1-\frac{1}{n+1}\end{aligned}$$

  1. 错位相减

函数

奇函数:$f(x) = -f(x)$

偶函数:$f(x)=f(-x)$

$a^r \times a^s = a^{r+s}$

${(ab)}^r = a^rb^r$

${(a^r)}^s=a^{rs}$

二次函数

  1. $\Delta=b^2-4ac$

  2. $x = \frac{-b \pm \sqrt{\Delta}}{2ab}$

  3. 韦达定理

$\left\{\begin{aligned}x&=1\\y&=2+x\end{aligned}\right.$

复数

$a+bi$

空间几何

$S_{圆柱体}=2\pi r(r+l)$

$V_{柱体}=Sh$

$S_{圆锥}$

$V_{锥}$

$S_{圆台}$

$V_{台}$

$S_{球}$

$V_{球}$

解析几何

直线$y = kx + b$$Ax + By + C = 0$

$y = \frac {1}{x}$

$y = ax^2$

圆锥曲线

圆$x^2 + y^2 = r^2$

椭圆$\frac {x^2}{a^2} + \frac {y^2}{b^2} = 1$

与椭圆相交的直线,交点线段长:$|AB| = \sqrt{1+k^2}|x_1 - x_2| = \sqrt{1+\frac{1}{k^2}}|y_1 - y_2|$

抛物线$x = 2py$

抛物线焦点弦长:$|AB| = x_1 + x_2 + p = \frac{2p}{\sin^2 \theta} \geq 2p$

$\frac{1}{|AF|}+\frac{1}{|BF|} = \frac{2}{p}$

$x_1x_2 = \frac{p^2}{4}$ $y_1y_2 = -p^2$

$|AF| = \frac{p}{1- \cos \theta}$$|BF| = \frac{p}{1+ \cos \theta}$

$S_{\triangle ABC} = \frac{p^2}{2 \sin \theta}$

双曲线$\frac {x^2}{a^2} - \frac {y^2}{b^2} = 1$

渐近线$y = \pm \frac {b}{a} x$

斜率公式:$k_{p_1p_2} = \frac{y_1 - y_2}{x_1 - x_2}$

倾斜角$\alpha$:$k = \tan \alpha (\alpha \neq \frac{\pi}{2})$

点到直线距离公式:$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2+B^2}}$

中点公式:$x = \frac{x_1+x_2}{2}$$x = \frac{y_1+y_2}{2}$

重心公式:$x = \frac{x_1+x_2+x_3}{3}$$y = \frac{y_1+y_2+y_3}{3}$

线段长度:$s=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

对数

$(N>0,a>0,a\neq 1)$

$\log_a{MN}=\log_aM+\log_aN$

$\log^a{\frac{M}{N}}=\log_aM-\log_aN$

$\log_a{N^n}=n\log_aN$

$a^{\log_a{N}} = N$

$\log_a{a} = 1$

$\log_a{1} = 0$

$(a>0且a \neq 1, c>0 且 c \neq 1)$

$\log_a{b} = \frac{\log_c{b}}{\log_c{a}}$

导数

原函数|导函数

-:|:-:

$kx + b$|$k$

$x^a$|$ax^{a-1}$

$\frac{1}{x}$|$- \frac{1}{x^2}$

$\ln{x}$|$\frac{1}{x}$

$a^x$|$a^x \ln{a}$

$log_a{x}$|$\frac{1}{x \ln{a}}$

$\sin x$|$\cos x$

$\cos x$|$-\sin x$

$uv$|$uv'+u'v$

$u+v$|$u'+v'$

https://zhuanlan.zhihu.com/p/41855459

https://www.mohu.org/info/symbols/symbols.htm

https://texwiki.texjp.org/?LaTeX%E5%85%A5%E9%96%80%2F%E7%B0%A1%E5%8D%98%E3%81%AA%E6%95%B0%E5%BC%8F%282%29#ma22efee